## Verifying Performance of Thermobaric Materials

# Verifying Performance of Thermobaric Materials for Small to Medium Caliber Rocket Warheads

by

Chris Ludwig
Senior Technologist
Talley Defense Systems



## Verifying Performance of Thermobaric Materials

#### Agenda

- 1. The Detonation Event
- 2. What is a Thermobaric Material
- 3. Thermobaric Material Performance
- 4. Talley History with Thermobaric Materials
- 5. Current Thermobaric Programs at Talley
- 5. Limitations on Thermobaric Materials
- 6. Optimization of Thermobaric Materials
- 7. Thermobaric Fuel Additives
- 8. Measuring Thermobaric Material Performance
- 9. Thermobaric Material Performance Comparison
- 10. Conclusions



#### The Detonation Event

#### Detonation of Composite Explosives

- Detonation can be Viewed as Three Discrete Events Merged Together
  - 1. The Initial Anaerobic Detonation Reaction
    - Microseconds in Duration
    - Primarily Redox Reaction of Molecular Species
  - 2. Post Detonation Anaerobic Combustion Reaction
    - Hundreds of Microseconds in Duration
    - Primarily Combustion of Fuel Particles too Large for Combustion in Initial Detonation Wave
  - 3. Post Detonation Aerobic Combustion Reaction
    - Milliseconds in Duration
    - Combustion of Fuel Rich Species as Shock Wave Mixes with Surrounding Air

Note: Aerobic combustion as used here means combustion with air.

## What is a Thermobaric Material

#### First Thermobaric Weapons

- Russians Fielded first Thermobaric Materials 20 Years Ago
  - RPO-A or "Schmel" Fielded in 1984 was First Thermobaric Weapon
    - RPO-A is a Shoulder Launched Recoiless Inflantry Flame Thrower with a Thermobaric Warhead
    - Replaced LPO-50 Backpack Flame Thrower
- Russians have Developed and Deployed Several Other Thermobaric Weapons, although the RPO-A is the Most Readily Available World Wide
  - Examples of Russian Thermobaric Weapons Include:
    - TBG-7 Grenade Launched Round
    - RShG-1 Rocket Propelled Grenade



## What is a Thermobaric Material

#### Thermobaric Compositions

- Thermobaric Compositions are Fuel Rich High Explosives that are Enhanced through Aerobic Combustion in the Third Detonation Event
  - Performance Enhancement Primarily Achieved by Addition of Excess Metals to Explosive Composition
    - Aluminum and Magnesium are Primary Metals of Choice
  - Third Event Enhanced by Aerobic Combustion of Fuel Rich Species in Shock Front, ie:
    - 4AI + 3O2 ==> 2AI2O3
    - 2Mg + O2 ==> 2MgO
    - 2H2 + O2 ==> 2H2O
    - 2CO + O2 ==> 2CO2



## What is a Thermobaric Material

#### Thermobaric Compositions

- Thermobaric Compositions are a Hybrid Explosive Composition having the Characteristics of both a High Explosive and a Fuel/Air Explosive
  - Compositions are Generally Detonable
    - Talley is Currently Working on a High Heat Output Formulation that may result in a non-detonable "Thermobaric" Composition
  - Compositions may be Liquid or Solid
    - Original Russian Formulations were Liquid
    - More Recent US Formulations are Solid
  - Compositions are Generally Less Sensitive than Classical High Explosives
- Highly Metallized Standard High Explosives meet the Definition of a Thermobaric Composition



## Thermobaric Material Performance

#### Thermobaric Compositions

- All Three Explosive Events can be Tailored to Meet System Performance Needs
  - Initial Detonation Reaction Defines System's High Pressure Performance Characteristics: Armor Penetrating Ability
  - Post Detonation Anaerobic Reaction Define System's Intermediate Pressure Performance Characteristics: Wall/Bunker Breaching Capability
  - Post Detonation Aerobic Reaction Characteristics Define System's Personnel/Material Defeat Capability - Impulse and Thermal Delivery



# Talley Thermobaric History

| PROGRAM                                               | SPONSOR                   | COMPLETION DATE | BRIEF DESCRIPTION OF EFFORT                                                                              |  |
|-------------------------------------------------------|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------|--|
| Flame Incendiary Technology (FIT)                     | Talley IRAD               | 1990            | Develop and Test Various Thermobaric Compositions                                                        |  |
| Shoulder-Fired Encapsulated Flame Thrower (SEFT)      | CRDEC                     | 1992            | Develop and Test Various Thermobaric Compositions                                                        |  |
| Shaped Charge Follow Through (SCFT)                   | CRDEC                     | 1994            | Develop and Demonstrate Tandem (predator sized) and Unitary (TOE sized) Thermobaric penetrating Warheads |  |
| Conceptual Warhead Technology<br>Program              | MICOM                     | 1995            | Develop and Demonstrate Tandem (predator sized) and Unitary (TOE sized) Thermobaric penetrating Warheads |  |
| Concept Demonstrator                                  | Talley IRAD               | 1999            | Develop and Demonstrate Unitary Thermobaric Warhead for Carl Gustaf sized, 84mm Shoulder Launched Weapon |  |
| Concept Demonstrator                                  | Talley IRAD               | 1999            | Develop and Demonstrate Thermobaric Warhead for 40mm<br>Door Breech Shoulder Launched Weapon             |  |
| High Impulse Thermal (HIT)<br>Materials Demonstration | Talley US Army            | 2001            | Demonstrate Single, Tandem, and Bunker Firings of HIT Materials                                          |  |
| SMAW-HIT Demonstration                                | Talley US Marine<br>Corp. | 2001            | Demonstrate HIT Containing Warheads against Cave and<br>Bunker Targets                                   |  |
| Golden Dragon/Bring Down the House Demonstrations     | Fort Leonardwood          | 2001/2002       | Thermobaric Materials Demonstrations - Destroy an Earth & Timber Bunker and a Block House                |  |
| SMAW NE                                               | Quantico SYSCOM           | 2002            | Develop and Qualify Thermobaric Dual Purpose Warhead for Marine's SMAW System                            |  |



## Current Talley Thermobaric Programs

| PROGRAM                                      | SPONSOR           | COMPLETION DATE | BRIEF DESCRIPTION OF EFFORT                                                                      |
|----------------------------------------------|-------------------|-----------------|--------------------------------------------------------------------------------------------------|
| High Heat                                    | Edgewood Arsenal  | In Progress     | Manufacture And Test Various Thermobaric Compositions Maximizing Thermal Output                  |
| Thermobaric Composition<br>Development CRADA | AMRDEC            | In Progress     | Manufacture And Test Various Thermobaric Compositions                                            |
| Concept Demonstrator                         | NSWC Indian Head  | In Progress     | Develop and Demonstrate Unitary thermobaric warhead for 66 mm M72 sized shoulder launched weapon |
| Concept Demonstrator                         | Talley IRAD ARDEC | In Progress     | Develop and Demonstrate Unitary thermobaric warhead for SMAW-D                                   |



#### Limitations on Thermobaric Materials

#### **Aerobic Combustion**

- Aerobic Combustion Requires Mixing with Sufficient Air to Combust Excess Fuels
  - Most Themobaric Materials Require 3 6 lb. Air per lb. Material for Complete Combustion
  - Requires Expansion to V/V<sub>0</sub> of about 4000 to 8000 before
     Displacing Sufficient Air for Complete Combustion
    - Shock Wave Pressures at these Expansion Ratios are Less than 10 Atmospheres
    - Cheetah Simulations Predict Closer to 1 Atmosphere Ignoring Additional Energy Available from Aerobic Combustion
    - Majority of Aerobic Combustion Energy is Available as Heat
    - Some Low Pressure Shock Wave Enhancement can also be Expected (Personnel Defeat)

## Optimization of Themobaric Materials

## Optimizing Aerobically Enhanced Explosives

- Aerobically Enhanced Explosives are Primarily Intended for Personnel/Material Defeat
- Selection of HE Type and Quantity Primarily Defines Detonation Reaction Characteristics
- Selection of Fuel Materials, Quantity, and Form (Particle Size, Morphology, etc.) Defines Both Anaerobic and Aerobic Combustion Reaction Characteristics
- Careful Selection of HE and Fuel Additives can Provide Multiple Target Defeat Capability (Armor, Structure, Material and Personnel Defeat)
- Personnel/Material Defeat with Minimum Collateral Structure Damage Requires Maximum Aerobic Enhancement
  - Highest Energy Practical Fuel Additives: Boron, Aluminum, Silicon,
     Titanium, Magnesium, Zirconium, Carbon, Hydrocarbons

#### Thermobaric Fuel Additives

#### Metal and High Energy Non-Metal Fuel Additives

 Boron, Aluminum, and Hydrocarbons Provide Highest Practical Fuel Energy Density Based on Mass and Volume

| Fuel Additive | Hcomb (cal/g) | Hcomb (cal/cc) |
|---------------|---------------|----------------|
| Boron         | 13,970        | 33,100         |
| Aluminum      | 7,560         | 20,410         |
| Titanium      | 4,260         | 19,130         |
| Zirconium     | 2,880         | 18,390         |
| Silicon       | 7,320         | 17,720         |
| Carbon*       | 7,840         | 13,820         |
| Magnesium     | 6,020         | 10,530         |
| Hydrocarbons* | 10,000        | 9,000          |



<sup>\*</sup> Assumes combustion to CO2.

#### Instrumentation Requirements

- Primary Outputs of Thermobaric Materials are Impulse and Heat
  - Temperature and Heat Flux Provide Best Assessment of Thermal Output
    - Temperature Measurements Should use Finest Gauge Thermocouple Wire Practical (Talley has Successfully used 36 AWG, 40 AWG too Mechanically Weak)
    - Thermocouple Bead Must Stand off From T/C Lead Wire Support by at Least 10 Wire Diameters
    - Blast Shielding Should be at least 5 Shield Diameters Upstream of Instrumentation
    - Heat Flux Gauges should be Fast Response (<0.05 sec.) and Robust (High Heat Fluxes will Damage More Sensitive Gauges)



#### Instrumentation Requirements

- Pressure Transducers Should be very Fast Response (piezocapacitive or resistive w\ > 400 kHz response recommended)
- Pressure Transducers should be Protected from Temperature and Light
  - Extremely High Thermal output of Thermobaric Compositions will Result in False Readings and Transducer Damage if not Protected
    - >= 0.06" Opaque RTV or Permatex Recommended
    - Thick Protective Layer Requires Stiff Transducer Element to Minimize Effect on Response Time (piezo elements work best)
- Transducers Should be Unobstructed
  - Placing Transducer Face Perpendicular (side on) to Shock Wave Maximized Protection of Transducer Element from Shrapnel



#### Instrumentation Maintenance

- Thermocouple Beads must be Inspected and Cleaned after each Shot
  - No foreign Residue Allowed on Bead or Bridging Lead Wires
- Heat Flux Gauges Must be Cleaned after Each Shot
  - No foreign Residue Allowed on Heat Flux Element
  - Complete Removal and Replacement of Black Paint off Heat
     Flux Element Between Each Shot Highly Recommended
    - Black Stencil Ink Provides Very Good Black Body Response with Fast Response Time
      - Ink Thickness <0.0005"</li>
      - Easily Dried with Heat Gun in <1 Minute</li>
      - Carbon Black Loaded for Excellent Thermal Conductivity and Good Emissivity



#### Instrumentation Maintenance & Setup

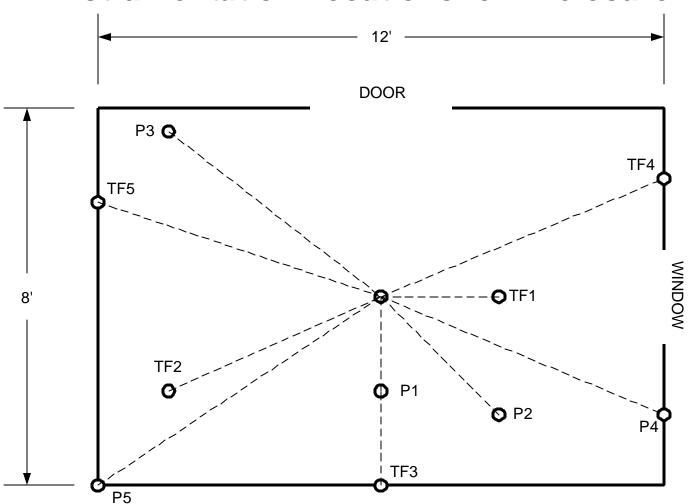
- Pressure Transducers should be Inspected after Each Shot
  - Clean Foreign Matter From Transducer Face
  - Replace Protective Coating as Required
- Make Sure Debri Shields are Oriented to Protect Gauges from Shrapnel Prior to Each Shot
  - Gauge Stands can get Bumped causing Improper Alignment
- Where Possible Set up Gauges and Charge to Minimize Reflections
- Other than Shrapnel Shields, Provide Direct Line of Sight to Charge



#### Enclosure Test Comparison

- Enclosure Test Performed in 12' x 8' x 10' Reinforced Concrete Enclosure
- Constant Volume Charge
- Baseline Charge: 1 lb. C4
- Themobaric Charge: 1.6 lbs. Talley Mix 5672-10

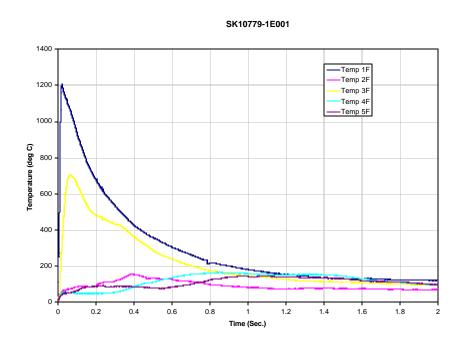
32% wt Aluminum

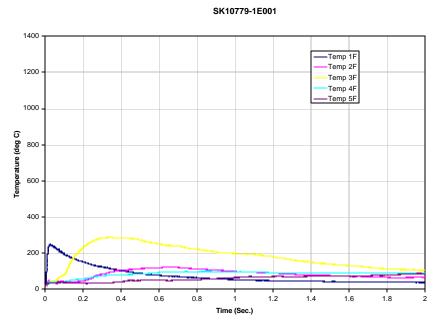

40% wt Zirconium

26.75% wt Isopropyl Nitrate

1.25% wt Gellant



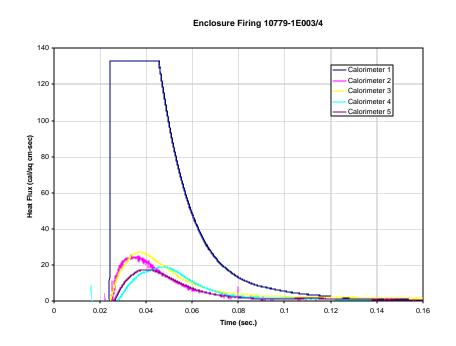

#### Instrumentation Locations for Enclosure Test

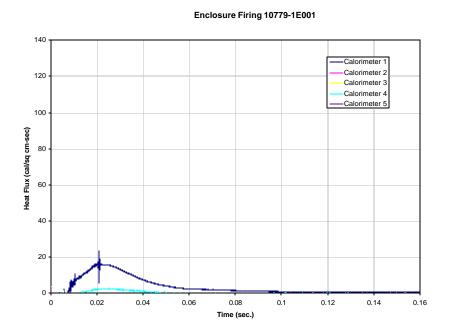





#### Enclosure Test: Temp -Time History

Thermobaric Mix 5672-10 vs. C-4 Baseline

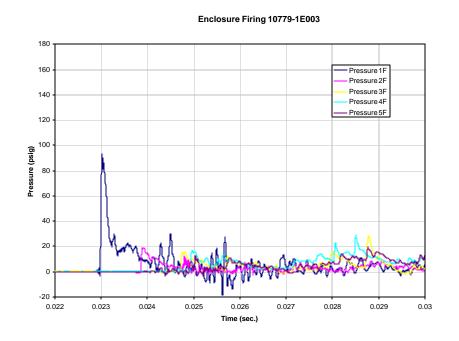


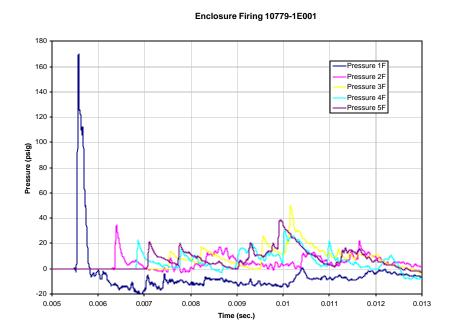






#### Enclosure Test: Heat Flux -Time History

Thermobaric Mix 5672-10 vs. C-4 Baseline






#### Enclosure Test: Pressure -Time History

Thermobaric Mix 5672-10 vs. C-4 Baseline







## **Conclusions**

#### Advantages of Thermobaric Materials

- Thermobaric Materials are Low Sensitivity Materials Ideal for Use in Insensitive Munitions
- Thermobaric Material Performance can be Tailored to the Target Set of Interest
  - Output can be Tailored from High Blast to High Thermal Output
- Thermobaric Materials are Best Suited to Personnel/Material Defeat
- Thermobaric Materials can Provide Significantly Higher Total Energy Output than Conventional High Explosives
  - Majority of Additional Energy Available as Low Pressure Impulse and Heat